
20

The Research Monograph Series in Computing, Electrical & Communication Networks
Vol. 1 (01), April 2023, pp. 20–29

CHAPTER 4

PERFORMANCE OPTIMIZATION

4.1 RE-ENGINEERING – CHANGES
IDENTIFICATION

The difference between the attribute and applicability values and the
difference between the calculated attribute values and the customer
requirement values make changes in design. Performance evaluation
process gives the calculated values as results.

Identification Rule and Improvement Rule are the true rules of
the re-engineering process which are used to reconstruct the designs
according to the feedback generation.

Fitness = [diff. value (attribute value – applicability) and (calculated
value – target)]

for each Fitness value F
 if F[i] < F[j]
 then F[i] = F[j]
end
for each F
 if F[i] < F[j]
 then F[i] = apply change
 if attribute A!= F
 then A = apply rules
 else
 related attribute RA = apply rules
end

4.1.1 Parameter Selection in the Analysis

a) Model Parameters
Pi1, Pi2 - Operations
 R1, R2,…, Ri - Resources
 C1, C2, C3 - Components

 Performance Optimization 21

b) Control Parameters
RTi - Required response time of task i
RTmax - Maximum response time of activities in the system
RT - Required throughput
RTmax - Maximum throughput that is achieved by the system
NI - Number of iterations of the algorithm
NImax - Maximum number of iterations
Rm - Resource multiplicity
Rm,max - Maximum multiplicity of a resource
Rm,hr - Multiplicity of hardware resource

4.1.2 Rules for Performance Identification

The application of the rules works with the help of the help of the
interpretations that are derived from the steps of performance evaluation
and the inferences that are derived from the UML diagrams. The
problems are first identified and the steps for the improvement are
applied to identify the tailbacks that are available in the system. The rules
for improvement are later applied to the performance problems.

PIrule 1 – Software tailback
If the task m is completed
 and all processors and other subtasks are not completed,
 then m is a software tailback.

PIrule 2 – Hardware tailback
If the processor pr is completed
 then pr is a hardware tailback

4.1.3 Modification Rules

The modification steps are used to reduce the tailback and longer path
problems. This is achieved either by increasing multiplicity of resources
or reducing execution demand or postponing a fraction of an operation
to the next phase or by redeployment of resources and processor.

Mrule1 – Complexity: Adding or removing a component infers the
complexity of a system

If the interaction is high among the components
 then reusability of the component is low, low maintenance
else reusability of the system is medium, average maintenance

22 Refactoring of Software Architectural Design for Performance Optimization

Mrule2 – Multiplicity: To increase multiplicity Add more number of
resources and the maximum threshold is assumed to be 97% and
this depends upon the applications.

If the resource Ri is a tailback and the capacity of Rm < Rm ,max

then increase multiplicity of Ri as min (Rm,max[Ui /0.97 * Ui ,sat])
Else Ri is an irresolvable tailback.

Mrule3 – Redeployment: Transfer some of the operations from highly
utilized processors to low utilization processors.

If processor pri has utilization Ui is greater than or equal to Ui,sat
then move least critical operations to low utilization processors

Mrule4 – Waiting time: Reduce the holding time of the tailback
resources by tasks, through reassignment in the design.

If processor pri is irresolvable and redeployment not possible
 then reassign capacity by changing PAdemand tag in the design

model

Mrule5 – Estimated time: Reduce the budgeted execution time of
operations by a fraction estimated by the user. This is done by an
assumption that the execution time can be reduced by introducing
principles of locality, increase of threads, etc.

If task m is a software bottleneck
 then reduce the execution time of the task by a fraction fΔet
 Change PAstep value in design

Mrule6 – Postpone: Postpone or delay some operations by a fraction
fΔd for later execution.

If task m is a software bottleneck and if m is asynchronous
 then introduce preemption of task by a factor of time.

Mrule7 – Partition: Partition components or resources based on their
usage or probability of access.

If m is irresolvable and targets different resources
 then repartition the functionality of the resources
 Critical task with large execution demand is isolated

and m can be partitioned and batched based on the resource targeted

 Performance Optimization 23

Mrule8 – Integrate: Combine similar requests or requests that target
the same resource for their execution. This rule can be applied to
overcome delay due to network latency.

If m is irresolvable and m is partitioned
 then batch multiple entries targeting the same resource

together

4.2 QUEUING NETWORK

This refers to the collection of interacting service centers. This is
represented by resources shared by customers, in which customer
competition for resources corresponds to queuing into the service
centers. Markov chains, queuing networks are structured performance
models as they elucidate system components and their connectivity.

Then are many advantages in the architectural design phase, the
indices of the performance like throughput, utilization, mean queue
length and mean response time allowed are computed both at the level
of its constituent service centers. Global and local indicators can be
interpreted back at the entire architectural description level and at the
level of its constituent components respectively, to obtain the diagnostic
information. Secondly, queuing network families equipped with fast
solution algorithms do not require the construction of the underlying
state space. Among that product-form queuing networks can be
analyzed compositionally by solving each service center in isolation via
multiplications. Thirdly, symbolical expression can be made solving a
queuing network in the case of certain topologies. In the early stages of
the software development cycle, this feature is useful.

4.2.1 Queuing Network Transformation UML

By using queuing network the Visualization of Software Design converts
the UML diagrams. Queuing network basic elements, (QNBE) which
are number of finer parts, are identified along with suitable syntactical
restrictions. These are established when an UML is transformed into
one of those elements and those elements which are derived from
the UML are connected in such a manure, where a well-formed QN
is yielded. A bottom-up approach which begins from small-grained
UML elements, ending up to assemblies of QNBEs is followed in the
mapping implementation which solves the notational gap between
these two modeling languages. The UML action classification, the UML
behavioral pattern classification, the UML pattern combination rules to
make QNBEs, and the connectivity rules for QNBEs are presented under

24 Refactoring of Software Architectural Design for Performance Optimization

this transaction. In order to transform UML descriptions into Queuing
Network, a Java based VSD has been developed.

With the given UML description, the behavioral part of the UML
representation of each design is checked by UML to QN parses. This
representation is done towards searching action classes which are
previously identified and queue-like behavioral patterns. Once all designs
and the combination rules are respected successful, transforms each design
i.e. UML to QN transforms each design into the corresponding QNBE.
Later the previously established connectivity rules of QNBEs with which
the topological part of the UML description for compliances are checked
by UML to QN, if this check is done successfully, and then the entire UML
description is transformed by UML to a queuing network model.

4.2.2 Algorithm: Queuing Network

The algorithm for the queuing network is given below:-

INPUT: Use Case Diagram, Sequence Diagram, Deployment Diagram.

TRANSFORMATION

1. Generate the QN model structure
 a. Determine QN devices from DD
 b. Determine QN tasks from UCD, DD, and SD
 c. Determine the allocation of tasks to devices from DD

2. Generate details for QN entries and activities
 For each performance scenario process the corresponding SD
 a. Determine entries of reference tasks
 b. Determine entries for offered services
 c. Determine entries for external services
 d. Determine activities
 e. Determine request flow among entries and activities

3. Generate QN parameters from UML performance annotations
 OUTPUT: QN model

4.2.3 QN Transformation a Hierarchical Approach

This has been developed for implementation of the transformation. A
bottom-up approach has been followed, starting from small-grained UML
elements, due to the major gap existing between these two modeling

 Performance Optimization 25

languages. This approach followed in the mapping implementation, ends
up to assemblies of QNBEs. This section mainly details about: the UML
classification, the UML behavioral pattern classification and the UML
pattern combination rules to make QNBEs and the connectivity rules for
QNBEs. A mapping between UML elements and the QNBEs is needed,
depicted in Figure 4.1 describes queuing network basic elements.

4.2.3.1 Connectivity Rules to Basic Elements of Queuing Network

QNBEs, assembled in semantically valid queuing network models are
allowed by several connectivity rules:

• An arrival process, possibly preceded by a buffer, can be followed only
by a service or fork process.

• A buffer can be followed only by a service, fork, join, or routing
process.

• A service process can be followed by any QNBE.
• A fork process, possibly preceded by a buffer, can be followed only by a

service process or another fork process.
• A join process can be followed by any QNBE.
• A routing process can be followed by any QNBE.

4.3 INDICES OF PERFORMANCE

Performance indices are often compared when problem arise, that are
basically numbers associated to model entities. It estimates at different
levels of granularity and, all indices at all levels of abstraction, cannot be
kept under control which is unrealistic. Incomplete information often
results from the evaluation of the model and architectural models are
quite complex, since they involve a software system characteristics, like
static structure, dynamic behavior, etc. And when characteristics are
cross-checked the performance problems many appear or emerge.

This architecture includes the performance indices and they are:

Response time – refers to the time interval between a user request
of a service and the response of the system.
Throughput – refers to the rate at which requests can be handled by
a system, and is measured in requests per time.
Resource utilization – is the ratio of busy time of a resource and the
total elapsed time of the measurement period.
Reliability – is provided by a system to the maximum extent
of probability with the desired levels of service (accuracy,

26 Refactoring of Software Architectural Design for Performance Optimization

performance, others) with regard to the operational profile of a
system over a given period of time. Reliability can be analyzed by
using the given equation.

 TC= C1aN+C2 [2N/m] +C3 [2am] N/m + C4 a(1 – a) mN (4.1)

where m is the number of system scenarios;
 Ci is the probability of execution of scenario k;
 N is the number of software components;

Figure 4.1 Basic elements of Queuing network.

 Performance Optimization 27

Performance – is provided by system to the maximum extent with
regard to the value of processed information. This in turn can be
achieved within the available resources being used to process the
systems.

Accuracy – is used as an acceptability level in such value-based
attributes as Reliability and Performance and it is a value-neutral
metric. Accuracy, provided by a system, minimizes to the extent of
the difference between delivered computational results and the real
world quantities that they represent.

Usability – is provided by a system to the extent of maximizing the
value of a user community’s ability in order to get benefited from
the capabilities of a system’s with regard to the operational profile of
the system.

Interoperability – The extent of maximizing the value of
exchanging information or coordinating control across co-
dependent systems is provided by a system through Interoperability.

Correctness – is provided by a system to extent of satisfies its
requirements and design specifications by its implementation. The
equation used for finding the correctness value is given in (4.2).

� � � � �

�

�
��

�

�
��

�

�
��

�

�
��

��
�1 1 1

1
1

1

() * *E C Vjk
j

t

i

Q

(4.2)

where Q is software Requirement specification;
 t is time taken by the product;
 Ci is correctness of each indices;
 Ejk is allocation of resources for the specific product;
 V is the number of system scenario;

Timeliness – is provided by a system to the extent of maximizing the
value added through the improving and developing new capabilities
within a given delivery time. And on the other side, with the set of
desired capabilities that is fixed, Timeliness provided by a system
minimizes the calendar time required to deliver the set of capabilities.

Affordability – is provided by a system to the extent of
maximizing the value added by instilling new capabilities within a
given budget.

28 Refactoring of Software Architectural Design for Performance Optimization

Reusability – is provided by a system to the extent of maximizing
the Return on Investment (ROI) of reusing the capabilities of system
in other products

ROI value cost

cost
�

�

 (4.3)

The above equation is used to calculate the ROI.

Maintainability – In order to rectify faults, improvise performance,
adapt to environment, system or component is modified which
is defined as system maintenance. There are many factors such as
maintenance staff, maturity of maintenance process, document
that supports maintenance, system architectures, quality, hardware,
platform and concluded by source code quality affect the system
maintenance. As the values maintained above can’t be obtained
directly, they are synthesized into measurable attributes, e.g.
Development and maintenance can be made possible to be fragmented
as system expertise, programming language expertise and experience.

Security – focuses on the enterprise information – confidence and
threats, availability, integrity, assurance and accountability. Three
categories – preventive, responsive and detective influence the security.

Efficiency – the degree of meeting the objection in terms if
scalability and responsiveness is referred as a definition of Efficiency.

4.4 PARTICLE SWARM OPTIMIZATION (PSO)

PSO is based on the movement and intelligence of swarms. It is a robust
stochastic optimization technique which applies the concept of social
interaction to problem solving. It was James Kennedy (social-psychologist)
and Russell Eberhart (electrical engineer) who developed in 1995.

A number of agents (performance indices) constituting a swarm
move around in the search space towards the best solution, are used by
the PSO. Each particle is treated as a point in an N-dimensional space
which adjusts itself in “flying” to its own experience including the flying
experience of other particles. These coordinates in the solution space is
maintained with the best solution (fitness) associated achieved so far by
that particle, is called as pbest. Another best value is called gbest which
is tracked by the PSO. It is the value obtained so far by any particle in the
neighborhood of that particle.

 Performance Optimization 29

4.4.1 PSO Algorithm

1. Initialize the swarm form the solution space
2. Evaluate the fitness of each particle
3. Update individual and global bests
4. Update velocity and position of each particle
 Go to step2, and repeat until termination condition

• Proposed PSO Algorithm
 for each performance indices PI
 PI [i] = 0
 end
 do
 for each PI
 PI[i] = fitness value F
 if PI[i] < pbest
 then pbest = gbest
 end
 else refactor the design
 end

4.5 SUMMARY

In the last decade, very few out of several approaches (introduced) have
been implemented in working tools and rely on structured models like
queuing networks and most of the implementations are UML based
implementations. But this chapter concentrates on formally defined
architectural description language as source notation. With the help
of a Queuing network, a VSD tool is presented in this chapter as a
reliable approach to convert the UML notations to the program coding.
Resources shared by classes of customers, corresponding to queuing into
the service centers are represented by a collection of interacting service
centers which is a queuing network. QNBE, a number of finer parts, are
identified along with suitable syntactical restrictions which establish
when an UML is transformed into one of those elements.

The proposed model automatically transforms software architecture
into performance models which successfully tackled with diagrams
UML. And the feedback system by the method enables for redesign the
architecture according to the desired requirement.

